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Note 

Reduction of the Dirichlet Problem 

to an Initial Value Problem* 

1. INTRODU~ZTI~K 

Initial-value problems are desirable for the computational solution of problems 
of mathematical physics. They are especially suited for modern calculators, both 
for the numerical simplicity of the solution methods and for the degree of precision 
achieved. 

This paper presents an initial-value approach for the solution of one of the 
classical problems of mathematical physics, the Dirichlet problem. Although the 
derivation is concerned with solutions of this problem for plane regions with 
prescribed boundary values, the approach presented here could be easily generaiized 
to higher dimensions. 

The initial-value method is derived by a combination of invariant imbedding 
techniques and the Fredholm integral equation method of rcprcsentation of the 
potential as a function of a dilayer distribution on the boundary of the region in 
question. 

Section 2 presents an invariant imbcdding approach to the solution of a certain 
family of Fredholm integral equations. Section 3 presents the Fredholm integrai 
equation method for the solution of the Dirichlet problem. Section 4 is devoted to 
the statement of the initial-value problem suggested by the results of the preceding 
sections and to the proof of its validity. Section 5 presents the numerical approach 
and experiments. Section 6 discusses the advantages of the method used. 

2. R~~ver~or 01: A FAMILY OF FREDHOLM IKTEGRAL EQLMIOSS 

In a previous paper [ 11, it was proved that the family of integral equations 

* Supported by the National Institutes of Health under Grant No. GM-16437-03, by the Air 
Force Office of Scientific Research under Contract AF 49(638)-1387. and by the National Aero- 
nautics and Space Administration under Contracts NGK 05-007-195 and NAS2-2503. 
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and the Cauchy system 

“A(& 8 = j1 w, Y, 4 dY, 4 dY, (2) 
0 

~~0, y, A) = j’ ~0, y’, A) K(~‘, y, 4 dy’, 0 G t, y d 170 <Ax, (3) 
0 

are equivalent for values of X such that solutions of Eq (1) exist for those X and 
solutions of the Cauchy system exist and are unique in the interval [0, l] of the 
real line. The subscript notation in the above equations indicates partial derivation 
with respect to the subscript. For a quick derivation of the preceding Cauchy 
system please see Appendix I. 

3. THE FREDHOLM INTEGRAL EQUATION METHOD 

This section presents an approach to the solution of the Dirichlet problem in the 
plane by reduction to a Fredholm integral equation of the second order. 

The exposition here follows that of the work of Courant and Hilbert [2, p. 2981 
in which further details can be found. 

Let R be a plane region bounded by a boundary curve r which will be assumed 
to be represented parametrically by two functions x(t) and y(t) which are differen- 
tiable up to the fourth order. 

The Dirichlet problem for R may be stated as follows: Find a function u(x, y) 
such that 

V%(x, y) = 0 in R, (6) 

440, ~(0) = f(t) on r, (7) 

wheref(t) is a known function. 
If the function u(x, y) is represented as 

(8) 
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where 

r = [(x - x(t))2 -1. (y .- y(t))2]‘;2, W 

and v is the exterior unit normal to r at (x(t), y(l)), then a(t) satisfies a Fredhoim 
integral equation. 

The representation (8) corresponds physically to the representation of the poten- 
tial U(X, 1~) inside the region as that caused by a double layer of density cr(f) on the 
boundary r. 

The integral equation satisfied by a(t) is 

o(t) = -. + j(t) + j’ k(t, s) u(s) ds, 
I 

where 

(1 i) 

k(t, s) = - L. bx~)(XO) - 4.v)) - f(t)(Y(t) - v(s)>1 
z [(i?(l)2 -1 $(l)‘)“” ((X(f) - x(s))2 - (y(t) - y(s))*)] ’ s + t* 

and 

k(t, t) = - +;- K(t), 

where K(t) is the curvature at (x(t), y(t)). The curvature can be explicitly written as 
a function of the parameterized coordinates as 

K(t) _- W)ji(t) - *0)9(t) 
(it(t)2 + j(t)y . (14) 

In the preceding formulas, the convention of representing parametric derivatives 
of the coordinate functions by dotting the corresponding functions has been 
followed. 

4. THE INITIAL VALUE METHOD FOR THE DImcHLFr PROBLEM 

The results of the preceding section can now be used to formulate an initial 
value problem to solve the family of integral equations 

4: 4 = - ;f(r) + x j k(t, s) u(s, A) ds, t > 0, x > 0. (15) 
r 
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When the kernel k(t, s) is given by Eqs. (12) and (13), then o(t, 1) is the solution of 
Eq. (I 1). This allows computation of the potential function U(X, v) by USC of the 
representation formula (8), where Zy/& may be written explicitly as 

BY -:- [N>(x - x(t)) - W)(Y - v(t)>1 
zv [(2(t)” -)- j(f)2)1!2 ((x - x(t))” -;-(L’ - y(t))“)]’ (16) 

The family of equations (15) is of the type analyzed in Section 2. Accordingly an 
initial-value problem may be posed as 

“*(t, A) = i K(t, s’, A) +‘, A) ds’, (17) 
dl- 

K,(t; s, h) = 1 K(t, s’, h) K(s’, s, A) ds’, (18) 1’ 

act, 0) y - ;f(t), (1% 

K(t, s, 0) z=z k(r, s), (20) 

where k(t, s) is given by Eqs. (I 2) and (I 3). 
Following Courant and Hilbert [2, p. 3011 it can be proved that the family of 

integral equations 

o(/, A) = h i k(t, s) u(s, A) ds, h 3 0, 
“I- (21) 

does not have an eigenvalue in the interval [0, I] of the real line. This implies that 
the solution of Eq. (19) is identically zero for values of h in the [O: l] interval. 
Fredholm’s theory assures then the existence of a solution for the nonhomogeneous 
equation (I 5) for those values of h and for any functionfcontinuously differentiable. 
It was stated previously that existence of a unique solution of the initial-value 
problem and existence of the solution of Eq. (15) suffice for the equivalence of 
both problems. This implies that existence of a unique solution of the Cauchy 
system suffices for equivalence of both problems for any value of h less than or 
equal to one. 

5. NUMERICAL TREATMENT OF THE INITIAL VALUE PROBLEM 

To solve numerically the system given by Eqs. (17)-(20), the integrals on the 
right side of Eqs. (17) and (18) were approximated by use of the trapezoidal 
integration formula. This formula was selected because of the particular nature of 
the integrands which are continous functions defined on a closed boundary [3]. 
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If x(t), v(t), 0 < t < T, are the parametric coordinates of the boundary r and 
m is the number of intervals into which the boundary is to be discretized, then the 
approximating system may be written as 

$ K,,(h) -' f ~ K,j(X) KjL(~), 
.l=l 

(22) 

(23) 

(24) 

(26) 

In the preceding system, oi(h) is the approximant of ~(t~, A) and K,,(h) is the 
approximant of K(ti , te, A). The discrete system contains nz* +- m equations. 
Solution of the system given by Eqs. (22)-(26) yields values o,(l), 1 < i < W, 
which may be used in a trapezoidal approximation of the representation formula 
(8) to compute values of the potential in the interior of the region under consider- 
ation. 

Integration of the discretized system was performed in an IBM 3601’91 system 
using a fourth order Runge-Kutta scheme. The step used for X was h = 0.02. 

In the first example the region was a unit circle discrctized into 50 equal intervals. 
The boundary condition was selected as 

f(t) -= cos* 1, 0 :< t -.< 27r. (27) 

The exact solution for this case can be exactly expressed as 

o(t, I) - -. $ (cos* t -- 0.25). (28) 

Computation of the approximate solution using the just-outlined scheme yields an 
accuracy superior to five significant figures. 

The second example was the computation of the potential inside the rectangular 
region 0 &< x < 12, 0 < y < 8 with the boundary conditions 

f= x(12 - x), (29) 

on the sides parallel to the x axis, and 

f = --y(8 -.- J>) (30) 
on the other sides. 
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The boundary was discretized in 40 intervals. This particular boundary does not 
satisfy the differentiability requirements at the boundary stated in Section 3. 
However, the potential in the region can be arbitrarily approximated by the poten- 
tial in smooth boundary regions sufficiently close to it. Numerically, two possible 
courses are open: first: to select the partition points different from any “corners”; 
second, to define the value of the kernel by side continuity or similar conventions. 
The latter alternative was chosen by defining the values of the parametric derivati- 
ves of the boundaries as the average of the side limits. The computed solution 
shown in Table I had an accuracy of 5 significant figures for points near to the 
center of the region. The solution near the boundaries is not so precise, due to the 
error introduced at the corners. The exact solution is 

u(x, y) = x(12 - X) - y(8 -J). (31) 

Computing times were 99 seconds for the first example and 58 seconds for the 
second. They could be greatly reduced by the use of coarser grids and other qua- 
drature formulas. 

6. DISCUSSION 

An initial value problem equivalent to a Dirichlet problem in the plane has been 
presented. Solution of the initial value problem is a feasible task for modern 
digital computers. Besides the high accuracy of the procedure, several other 
advantages are worth mentioning. 

The integration procedure depends only on the particular region and boundary 
used for the definition of the initial values (Eqs. (19) and (20)) of the Cauchy 
system. This reduces sensitivity of the computation time to the particular problem. 
The integration time is dependent only on the integration method used and on the 
number of discrete partitions used in the boundary. The generality of the method 
with respect to region shapes is obvious. Although, depending on the integration 
method used, considerable storage is needed during the integration of the Cauchy 
system, storage of a unidimensional function, o(l, h), is sufficient to compute the 
potential at any point inside the region. This compares favorably to storage of a 
two-dimensional function as required by conventional difference methods. 

The procedure outlined here may be used for an open curve I’. In this case, the 
potential in the plane generated by a dilayer at r, when the potential on the exterior 
(as defined by the normal to I’) is prescribed, can be computed. 

The derivation outlined here could be generalized to higher dimensions, and other 
types of potential problems can bc subjected to a similar treatment. 
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APPENDIX: DERIVATION OF THE CAUCHY SYSTEM 

The following is a derivation of the Cauchy system (Eqs. (2)-(5)) introduced in 
Section 2. This derivation is given mainly as a plausibility argument for such a 
system. 

Let u(t, h) be defined as the solution of the integral equation 

uct, A) = g(t) + h j1 k(t, Y) u(.v, A) dy. 
0 

(a-1) 

Differentiation of both sides of this equation with respect to X yields 

(a-2) 

Let K(t, J, h) be introduced as the solution of the integral equation 

KG, y, 9 --: W, v> + A j’ W, Y’> KW, y, 4 dy’. 
0 

(a-3) 

Comparison of equations (a-2) and (a-3) and use of the superposition principle 
for linear systems yields 

thus establishing Eq. (2), Section 2. 
Differentiation of both sides of Eq. (a-3), on the other hand, yields 

KA(& Y, A) = j' W, Y') KC/, Y, 4 &' + h j' W, Y? Xv', Y, 4 dy', (a-5) 
0 0 

and comparison with Eq. (a-3) and use of the superposition principle yields 

(a-6) 

which is Eq. (3) Section 2. 
Equations (4) and (5), Section 2 are readily established from Eq. (a-l) and (a-3) 

by setting X = 0. 
Equation (a-3), in particular, is the differential form of a wellknown formula for 

resolvents of integral equations’ 

KC& Y, 4 - K(t, Y, A'> = (A - A') j' K(f, Y', 4 KC./, Y, A') &'. (a-7) 0 
1 Cow-ant, R. and Hilbert, D. “Methods of Mathematical Physics,” Vol. 1 (p. 141, Eq. (63)), 

Interscicnce, New York, 7th edition, 1966. 
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